H1-receptor antagonist, tripelennamine, does not affect arterial hypoxemia in exercising Thoroughbreds.

نویسندگان

  • Murli Manohar
  • Thomas E Goetz
  • Sarah Humphrey
  • Tracy Depuy
چکیده

It has been suggested that pulmonary injury and inflammation-induced histamine release from airway mast cells may contribute to exercise-induced arterial hypoxemia (EIAH). Because stress failure of pulmonary capillaries and EIAH are routinely observed in exercising horses, we examined whether preexercise administration of an H1-receptor antagonist may mitigate EIAH. Two sets of experiments, placebo (saline) and antihistaminic (tripelennamine HCl at 1.10 mg/kg iv, 15 min preexercise) studies, were carried out on seven healthy, exercise-trained Thoroughbred horses in random order 7 days apart. Arterial and mixed venous blood-gas and pH measurements were made at rest before and after saline or drug administration and during incremental exercise leading to maximal exertion at 14 m/s on 3.5% uphill grade for 120 s. Galloping at this workload elicited maximal heart rate and induced exercise-induced pulmonary hemorrhage in all horses in both treatments, thereby indicating that capillary stress failure-related pulmonary injury had occurred. In both treatments, EIAH, desaturation of hemoglobin, hypercapnia, and acidosis of a similar magnitude developed during maximal exertion, and statistically significant differences between the placebo and antihistaminic studies could not be demonstrated. The failure of the H1-receptor antagonist to modify EIAH significantly suggests that pulmonary injury-induced histamine release may not play a major role in bringing about EIAH in Thoroughbred horses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exercise-Induced Arterial Hypoxemia in Thoroughbreds Is Not Affected by Administration of the H1 Histamine Receptor Antagonist Tripelennamine Hydrochloride

Exercise-induced arterial hypoxemia (EIAH) in human subjects may be associated with pulmonary injury/capillary stress failure-induced histamine release and is reported to be ameliorated by administration of H1 antihistiminics. EIAH is a routine occurrence in strenuously exercising Thoroughbreds, 75–100% of which also experience exercise-induced pulmonary hemorrhage (EIPH). In contrast with repo...

متن کامل

NaHCO(3) does not affect arterial O(2) tension but attenuates desaturation of hemoglobin in maximally exercising Thoroughbreds.

The objective of the present study was to examine the effects of preexercise NaHCO(3) administration to induce metabolic alkalosis on the arterial oxygenation in racehorses performing maximal exercise. Two sets of experiments, intravenous physiological saline and NaHCO(3) (250 mg/kg i.v.), were carried out on 13 healthy, sound Thoroughbred horses in random order, 7 days apart. Blood-gas variabl...

متن کامل

Intrapulmonary arteriovenous shunts of 15 m in diameter probably do not contribute to arterial hypoxemia in maximally exercising Thoroughbred horses

Manohar, Murli, and Thomas E. Goetz. Intrapulmonary arteriovenous shunts of 15 m in diameter probably do not contribute to arterial hypoxemia in maximally exercising Thoroughbred horses. J Appl Physiol 99: 224–229, 2005. First published March 17, 2005; doi:10.1152/japplphysiol.01230.2004.—The present study examined whether Thoroughbred horses performing strenuous exercise exhibit intrapulmonary...

متن کامل

Preexercise hypervolemia does not affect arterial hypoxemia in Thoroughbreds performing short-term high-intensity exercise.

It is reported that preexercise hyperhydration caused arterial O(2) tension of horses performing submaximal exercise to decrease further by 15 Torr (Sosa-Leon L, Hodgson DR, Evans DL, Ray SP, Carlson GP, and Rose RJ. Equine Vet J Suppl 34: 425-429, 2002). Because hydration status is important to optimal athletic performance and thermoregulation during exercise, the present study examined whethe...

متن کامل

Nasal strips do not affect pulmonary gas exchange, anaerobic metabolism, or EIPH in exercising Thoroughbreds.

The present study was carried out to examine whether nasal strip application would improve the exercise-induced arterial hypoxemia and hypercapnia, diminish anaerobic metabolism, and modify the incidence of exercise-induced pulmonary hemorrhage (EIPH) in horses. Two sets of experiments, control and nasal strip experiments, were carried out on seven healthy, sound, exercise-trained Thoroughbred ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 92 4  شماره 

صفحات  -

تاریخ انتشار 2002